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With the development of quantum thermodynamics it has been shown that relaxation to thermal equilibrium
and with it the concept of heat flux may emerge directly from quantum mechanics. This happens for a large
class of quantum systems if embedded into another quantum environment. In this paper, we discuss the
complementary question of the emergence of work flux from quantum mechanics. We introduce and discuss
two different methods to assess the work source quality of a system, one based on the generalized factorization
approximation, the other based on generalized definitions of work and heat. By means of those methods, we
show that small quantum systems can, indeed, act as work reservoirs. We illustrate this behavior for a simple
system consisting of a spin coupled to an oscillator and investigate the effects of two different interactions on
the work source quality. One case will be shown to allow for a work source functionality of arbitrarily high
quality.
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I. INTRODUCTION

Thermodynamics is a theory of impressive success and a
wide range of applicability. This is true despite its origin as a
purely phenomenological theory in the late 16th and 17th
century. It took about 200 years until Boltzmann and Max-
well gave a foundation of thermodynamics in terms of sta-
tistical mechanics based on classical mechanics.

In the beginning 20th century, the invention of quantum
mechanics has triggered various attempts to establish a
theory of quantum thermodynamics, i.e., to explain and de-
rive thermodynamics by quantum mechanics only. Starting
with John von Neumann, those works first concentrated on
proving the ergodic theorem for isolated quantum systems
with a large number of degrees of freedom in the sense of the
identity of time average and microcanonical ensemble aver-
age for certain �macroscopic� observables for a majority of
the initial states �1,2�. Deutsch has shown in �3� that the
ergodic theorem holds for extensive and intensive observ-
ables under the presence of a random perturbation. Results
from quantum chaos are used in �4� to prove that thermali-
zation occurs for a system of hard spheres in a box. Yet
another view on the subject has been given by Reimann,
arguing that limitations of control and measurement accuracy
make statistical physics the appropriate description for typi-
cal large systems �5,6�.

It was only in recent years that another approach to quan-
tum thermodynamics has received increased attention. This
approach focuses on the role of the partitioning of the uni-
verse into “system” and “environment” and how the en-
tanglement between those parts and the properties of typical
environments leads to a thermal state in the system even for
almost any instant in time. In contrast to the previously men-
tioned works, this approach does not try to prove a �general-
ized� ergodic theorem and reaches its statements without in-
voking time averages. This approach was first developed by

Gemmer et al. �7–9�, where the emergence of thermody-
namic behavior from quantum mechanics for a wide class of
quantum systems and typical embeddings has been estab-
lished �see �10� for a similar but not as general result�. Other
recent papers have extended and clarified the results of the
aforementioned authors �11–13�. The present paper is in-
spired by this approach although we do not make explicit use
of its results.

The interest in a quantum approach to thermodynamics is
twofold: first, it promises a deeper understanding of thermo-
dynamic core concepts like relaxation, irreversibility, heat,
work, and might elucidate connections between those and
concepts known from quantum mechanics, e.g., entangle-
ment. Second, such an approach should help to find gener-
alizations for the mentioned concepts for nonequilibrium, fi-
nite systems and strong interaction.

The definition of work in quantum systems has been dis-
cussed in various papers �14–16� and has been applied suc-
cessfully to quantum heat engines �17–21�. Still, all those
investigations typically deal with quantum systems that are
subject to driving by means of a time-dependent Hamilton
operator of the system. Thus, the identification and definition
of work is determined a priori by relating it to the presence
of classical driving, while no microscopic derivation of the
concept is given. In the present paper we deal with closed,
finite quantum systems. For such systems the functionality of
cooling has already been investigated �see, e.g., �22��. Here
we are interested in the question under what conditions a
quantum system coupled to another can exert the effect of a
classical driver over the other system and thus be identified
with a reversible work source. By our new approach based
on a complete quantum modeling of the work source, we are
able to show that classical driving and therefore work is not
a concept bound to macroscopic devices.

The paper is organized as follows. In Sec. II, we present
the factorization approximation �FA� and its generalization to
the case of semimixed factorizing initial states. It is shown
that the applicability of the FA allows one to identify quan-
tum systems as classical drivers. In Sec. IV, we deal with the
question of work source quality definition. Based on Sec. II,
we introduce a measure inspired by the FA and establish its
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connection to work source functionality. In addition, we de-
velop another work reservoir quality measure based on con-
siderations of work and heat fluxes, if an appropriate defini-
tion of those is given. The definition of work and heat flux
we chose to use throughout the paper is taken from �23� and
outlined in Sec. III. In Sec. V we present the spin-oscillator
model and its properties for two types of interactions. This
simple quantum model is then used to illustrate the imple-
mentation of work sources of arbitrarily high quality in quan-
tum mechanics in Sec. VI and to discuss the limits of two
different work functionality quality measures in Sec. VII,
where we also give an idea of the overall work source be-
havior of the second type of the model. Finally, we summa-
rize our results in Sec. VIII.

II. EFFECTIVE DYNAMICS: TIME-DEPENDENT
DRIVING

The factorization approximation has been thoroughly dis-
cussed, e.g., in �24,25�. We will therefore only summarize
the basic statements and give a generalization to the result of
�24�.

In its form stated in �24�, the FA reads as follows. Let us
consider a bipartite quantum system with Hamilton operator

Ĥ = Ĥ1 + Ĥ12 + Ĥ2 �1�

acting on the joint Hilbert space H12=H1 � H2. The opera-

tors Ĥ1 and Ĥ2 act on the respective local Hilbert spaces H1
and H2 only. Let the initial state factorize, i.e.,

���0�� = ��1�0�� � ��2�0�� . �2�

After some time t, the total state of the system either given
by ���t�� or its density matrix �̂�t�= ���t�����t�� gives rise
to the reduced states of the two subsystems �̂1�t�
=tr2����t�����t��� and �̂2�t�=tr1����t�����t���. Although the
state was assumed to factorize initially, in general, the sub-
system states no longer will be pure states due to entangle-
ment introduced by the interaction between the subsystems.
As the total state is pure, the subsystem purities P��̂1�t��
=tr���̂1�t��2	 and P��̂2�t��=tr���̂2�t��2	 are equal at any in-
stant t. Now, as long as the purity of the subsystems is close
to 1, it can be shown that the dynamics of the system are, in
good approximation, given by the reduced density matrices
�̂i= ��i�t����i�t��, i=1,2, where the ��i�t�� obey the coupled
differential equations

i���̇1�t�� = �Ĥ1 + ��2�t��Ĥ12��2�t�����1�t�� , �3�

i���̇2�t�� = �Ĥ2 + ��1�t��Ĥ12��1�t�����2�t�� �4�

up to an irrelevant relative phase �for a detailed derivation
see �24��. Obviously, the reduced states of the system evolve
under the action of time-dependent effective Hamiltonians

Ĥ1+ Ĥ1
eff�t� and Ĥ2+ Ĥ2

eff�t�, respectively, with

Ĥ1
eff�t� = tr2�Ĥ12�1̂ � �̂2�t��	 , �5�

Ĥ2
eff�t� = tr1�Ĥ12��̂1�t� � 1̂�	 , �6�

and in the present case �̂ j�t�= �� j�t���� j�t�� , j=1,2.
The above statement can be generalized for the case of

factorizing semimixed initial states, that is, states of the form

�̂�0� = �̂1�0� � ��2�0����2�0�� . �7�

If the purity P��̂2�t�� of the initially pure system 2 remains
close to unity, the dynamics of the system can be given ap-
proximately by the coupled differential equations

i��̇̂1�t� = �Ĥ1 + Ĥ1
eff�t�, �̂1�t�� , �8�

i���̇2�t�� = �Ĥ2 + Ĥ2
eff�t����2�t�� , �9�

with �̂2�t�= ��2�t����2�t��. Again, the effect of the sub-
systems on each other is to induce a time-dependent effective
Hamiltonian that governs the time evolution of the sub-
systems. For the derivation, see Appendix A.

Here, we would like to stress the fact that, as long as the
prerequisites for the FA are met, Eqs. �8� and �9� present an
alternative description of the system dynamics: The sub-
systems can be considered classical drivers for each other. It
is remarkable that this feature is reciprocal and based on
�approximate� constancy of the subsystem purities �entro-
pies�.

The energy exchanged this way can aptly be called
“work:” classically one would define the work W imparted
over time tS on a Hamiltonian system H��� with � denoting
the time-dependent control parameter as �26�

W = 

0

tS

dt
d�

dt

�H

��
�z��t�� , �10�

where z��t� denotes the system’s state trajectory in phase
space. One notes, however, that the energy exchange will, in
general, be contaminated by contributions violating the con-
stancy of local purity. This contamination is a characteristic
feature of the underlying total �unitary� dynamics. Close to
thermal equilibrium such a contribution would be called
heat, �Q: Work and heat in open quantum systems are usu-
ally defined as �14,15,17–19�

dU = d�Ĥ� = tr��̂dĤ� + tr�Ĥd�̂�
�W �Q �11�

again recognizing the energy exchange in the FA scenario as
work.

We emphasize here, that explicitly time-dependent Hamil-
tonians are not part of the fundamental description of nature
as given by quantum mechanics. Therefore, there is no way
how they could come about save by an effective description
of a system like the FA. If one denied any physical signifi-
cance of such an effective description and hence considered
it only a mathematical simplification without physical mean-
ing, one obviously would have to deny the physical existence
of classical drivers altogether. This is not a reasonable op-
tion.
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III. LEMBAS PRINCIPLE

The effective dynamics according to Eqs. �8� and �9� al-
lows for an intuitive approach to the concept of work: in
general, however, only approximately; the deviations remain
unquantified. Here, the LEMBAS approach �23� comes into
play based on the following ideas: first, choose a partitioning
of the total isolated system into system of interest �1� and its
environment �2� and consider the exact local dynamics of the
system �1�. The state of the total system is

�̂ = �̂1 � �̂2 + Ĉ12, �12�

where �̂ j are the respective reduced density operators. Then,
the exact �effective� Liouville-von Neumann equation for
subsystem �1� can be written as

�̇1�t� = −
i

�
�Ĥ1 + Ĥ1

eff�t�, �̂1�t�� + L1
eff��̂�t�� �13�

with the superoperator L1
eff��̂�t��=−i�−1 tr2��Ĥ12, Ĉ12�	.

The local energy Ĥ1� is defined now based on consider-
ations how the local system would appear to an experimenter
�“local effective measurement basis,” LEMBAS�. There is
some ambiguity in the procedure, but it has proven useful in
�23� to choose

Ĥ1� = Ĥ1 + Ĥ1,a
eff �t� , �14�

where Ĥ1
eff�t�= Ĥ1,a

eff �t�+ Ĥ1,b
eff �t� and Ĥ1,a

eff �t� is the part of

Ĥ1
eff�t� that commutes with Ĥ1.
The final step is to discriminate energy changes of the

system based on whether they change the local von Neu-
mann entropy S1 or not, that is whether they are of coherent
�work� or incoherent origin �heat�. This leads to the follow-
ing formulas for heat and work fluxes for any partitioning

and any Ĥ1�:

Ẇ�t� = tr�Ḣ̂1,a
eff �t��̂1�t� − i�Ĥ1��t�,Ĥ1,b

eff �t���̂1�t�	 , �15�

Q̇�t� = tr�Ĥ1��t�L1
eff��̂�t��	 . �16�

How do these generalized definitions connect to their ther-
modynamic analogs? In the thermodynamic limit, that is,
close to the thermodynamic equilibrium, for infinitely sized
systems and weak couplings, the von Neumann entropy of
the respective subsystem and its thermodynamic entropy co-
incide and the LEMBAS definitions of work and heat blend
in with their thermodynamic counterparts.

But also in far from equilibrium situations, the LEMBAS
definitions can be associated with work and heat in the fol-
lowing sense: we know from the results of quantum thermo-
dynamics �7–9� that thermodynamic behavior of a system
can be seen to result from an embedding in an environment,
which by itself needs not to be and usually is not thermody-
namic �in equilibrium, infinite, weak coupling�. Thus, valid-
ity of thermodynamic concepts is not a property of the total
system but has to do with whether or not the system of
interest is influenced by its environment in such a way that
thermodynamic properties emerge, which is a purely local

consideration. The LEMBAS definitions take this concept to
the extreme in the sense that they state that “what locally has

a work effect Ĥ1
eff�t�, is work” and “what locally has a heat

effect L1
eff��̂�t��, is heat” even for nonthermodynamic �in the

classical sense�, far from equilibrium situations. Making the
distinction in this way is justified by the fact that classical
driving can be unambiguously identified as work even in the
thermodynamic sense and, therefore, any effect L1

eff��̂�t�� not
related to work is identified as heat.

Finally, we note that the LEMBAS definitions retain the
properties that

�1� work is energy exchange due to changing parameters
of the Hamilton operator that describes the system;

�2� heat is energy exchange associated with change of
entropy, although here a generalized definition of entropy is
to be used.

IV. MEASURES OF WORK SOURCE QUALITY

A. Work reservoir

An ideal work reservoir can be defined as a system ex-
changing energy only in the form of work. It is obvious that
this definition is too restrictive for the classification of real-
istic models, that is, models involving finite size, finite inter-
action and limited control. No realistic model can comply to
the idea of such an ideal work source as even arbitrary small
but finite deviations from this idealized concept would lead
to a rejection of a model as a work source. Additional com-
plications arise due to the fact that we have to consider pro-
cesses, the properties of which may change with time.

Thus, there is need for a more differentiated measure of
work reservoir functionality. In a nonideal world, special at-
tention is to be paid to the definition and quantification of the
quality of a work reservoir to be able to compare and to draw
conclusions on justified grounds.

Basically, one can distinguish two types of measures de-
pending on whether they refer to a single point in time or to
a �finite or infinitely large� interval of time. We like to refer
to them as instantaneous and integral measures and our main
interest lies on the integral ones, defined with respect to
some finite time interval �again because under realistic con-
dition it is not expected that a system can be a work source
for all times�. In the following section, we present two dif-
ferent approaches to the problem based on two distinct
physical reasonings.

B. Purity based measure

Comparing Eq. �13� to Eq. �8�, one realizes that the ap-
plicability of the FA is equivalent to a vanishing L1

eff. Thus, if
the total system was initially in a semimixed state, L1

eff is
negligible if P��̂2�t���1. In this sense, P��̂2�t�� is a measure
of work reservoir functionality. The closer it is to 1, the
smaller L1

eff has to be and the less energy may be exchanged
as heat instead of work. Note, that acting as a work reservoir
is a reciprocal property, i.e., each subsystem acts on its part-
ner in an analogous way. This is in perfect agreement with
what we know from thermodynamics. If we have two sys-
tems undergoing a process during which only work is ex-
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changed between them, both systems obviously act as work
reservoirs for each other although we may imagine one sys-
tem to be the gas filling a box and the other system to be the
piston capping the box and being connected to a spring.

At first glance, the purity therefore seems to be a good
candidate for assessing work source quality: it is an easy
quantity to compute—even analytically—and by its connec-
tion to the FA, the physical reasoning is clear.

However, as clear as the ideal situation with P��̂2�t��=1
is, it is unclear to give a quantitative interpretation for puri-
ties lower than unity because there is neither an obvious
relation between P��̂2�t�� and L1

eff nor between L1
eff and the

quality of the work reservoir functionality. Moreover, it is
expected that the same purity decrease for different systems,
especially of different size, has to be weighted differently.
Thus, any concrete choice of a minimum purity beyond
which a system will be accepted as a work reservoir will
remain somewhat arbitrary and difficult to compare with
other systems’ purity behavior. If such a purity threshold was
given, the respective system could be considered as a work
source for any time interval during which the purity stays
above the given threshold.

As will become evident in Sec. V B, there is another
problem besides the arbitrary definition of the threshold
when using this measure: the decrease in purity is linked to
the size of L1

eff only. Thus, the purity does not contain any

information about the relative effects of Ĥ1
eff�t� and L1

eff.
Since the former is related to work and the latter to heat, a
comparison of both in terms of their effect on the energy of
the system is in general expected to be an important part of
the assessment of work source quality.

C. Work and heat flux based measure

We introduce the ratio

r�t� ª
�Ẇ�t��

�Ẇ�t�� + �Q̇�t��
, �17�

which has the following convenient properties:

�i� r�t�=1⇔Ẇ�t��0∧ Q̇�t�=0: ideal work source;

�ii� r�t�=0⇔Ẇ�t�=0∧ Q̇�t��0: ideal heat source.

Provided there is energy exchange at all �i.e., not both, Ẇ,

Q̇ are zero�, r is well behaved. As we took separate moduli in
the denominator, there can be no compensation due to oppo-
site sign.

Based on this instantaneous measure, we can develop an
integral measure for finite time intervals �t0 , t1�. Directly in-
tegrating over r�t� is not an option for this would completely
ignore the time dependence of the total of the absolute fluxes
and therefore the necessary weighting of r. It is straightfor-
ward to apply the necessary weight, integrate and then nor-
malize the result defining

R�t1,t0� ª



t0

t1

r�t���Ẇ�t�� + �Q̇�t���dt



t0

t1

��Ẇ�t�� + �Q̇�t���dt

=



t0

t1

�Ẇ�t��dt



t0

t1

��Ẇ�t�� + �Q̇�t���dt

. �18�

Defining the quantities

W�t1,t0� ª 

t0

t1

�Ẇ�t��dt,Q�t1,t0� ª 

t0

t1

�Q̇�t��dt , �19�

we can rewrite Eq. �18� in the form of Eq. �17� as

R�t1,t0� ª
W�t1,t0�

W�t1,t0� + Q�t1,t0�
. �20�

This integral measure has the same special points like the
instantaneous measure with the following interpretations:

�i� R�t�=1⇔ Q̇�t�=0 for all t� �t0 , t1� and Ẇ�t��0 for
some t� �t0 , t1�: ideal work source;

�ii� R�t�=0⇔Ẇ�t�=0 for all t� �t0 , t1� and Q̇�t��0 for
some t� �t0 , t1�: ideal heat source.

We stress the fact here that a measure based on the inte-

grated work W�t1 , t0�=�t0
t1Ẇ�t�dt and the �analogously� inte-

grated heat is not able to accomplish such precise assessment
of the work source quality: for oscillating fluxes, e.g.,
Q�t1 , t0� might reach 0 for some interval, although during the
time interval there might have flown vast amounts of heat.
By employing the integrals of the absolute fluxes in the cho-
sen definition, we achieve a much stronger statement about
the quality of a system.

Finally, let us note that there is also a drawback to this
measure, namely, the difficulty of calculating it because of
the integration over the absolute values of the fluxes.

V. APPLICATION: SPIN-OSCILLATOR MODEL (SOM)

We turn now to the description of the model we will use
to demonstrate the existence of small quantum systems that
do act as work sources. We illustrate the features of FA and
the various work measures we have discussed above and
discuss the model and its properties with special focus on the
dynamics of the purity.

The model is a single spin interacting with a harmonic
oscillator �spin-oscillator model, SOM�. On the one hand, the
SOM serves as an allusion to a classical steam engine with a
gas of some temperature �spin� and a piston periodically
compressing and expanding the gas �oscillator�. On the other
hand, the SOM has been used in previous related works as a
central element of quantum thermodynamic machines
�18,19,27�. Also, the simplicity and therefore partially pos-
sible analytical treatment of the model has further motivated
the choice.
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The SOM is defined by the Hamiltonian

Ĥ =
�s

2
�̂z + Ĥint + �o
â†â +

1

2
� , �21�

where we have set �=1. We denote the spin and oscillator

local Hamilton operators as Ĥs and Ĥo, respectively. The

eigenstates of Ĥs are �0� and �1� with the respective eigen-

values ��s /2. The eigenstates of Ĥo are defined as ��k�	 with
eigenvalues �o�k+1 /2�, where k=0,1 ,2 , . . ..

We will discuss the z and the xz interaction, Ĥint

= �Ĥz , Ĥxz	, where

Ĥint = Ĥz = ��̂zx̂ , �22�

Ĥint = Ĥxz = ���̂z + ��̂x�x̂ . �23�

For the initial state of the total system, we assume that the
spin has interacted in the past with some heat bath in order to
establish a thermal state but now is decoupled from said bath
�or the bath coupling is so weak that its influence may be
neglected during the period of evolution one is interested in�.
The oscillator is prepared in a coherent state �	�. Thus, the
initial state is given as

�̂�0� = 
c 0

0 1 − c
� � �	��	� �24�

where the spin’s state is given in its energy eigenbasis. The
self-generated process imposed on the spin via coupling to
the oscillator might thus be called “adiabatic;” however, due
to quantum mechanical interactions the local entropy �purity�
will, in general, not be constant, see below.

A. z-interaction (z-SOM)

Representing the Hamiltonian �21� in the eigenbasis of the
spin, one finds that it has a block-diagonal structure,

Ĥ =�Ĥo − �x̂ −
�S

2

Ĥo + �x̂ +
�S

2
�¬ 
Ĥ−

Ĥ+

� .

�25�

The same obviously holds for the time-evolution operator
and—by the block-diagonal structure of the initial state—
also for the propagated state �̂�t� of the total system,

�̂�t� = 
c�	−�t���	−�t��
�1 − c��	+�t���	+�t��

� . �26�

Here we have used the definitions �	
�t��ª Û
�t ,0��	� and

Û
�t1 , t0�=exp�−iĤ
�t1− t0��. Note that the dynamics of the

system are periodic, because both Hamilton operators Ĥ


describe �displaced� harmonic oscillators with the same fre-

quency �o. Thus, we have Û�t1+2�m�o
−1 , t0+2�n�o

−1�
= Û�t1 , t0� for integer numbers n ,m.

Because of the simple structure of the time evolution of
the system, the purity of the oscillator can be computed ana-
lytically and turns out to be given by

P��̂o�t�� = c2 + �1 − c�2 + 2c�1 − c���	−�t��	+�t���2 �27�

with the time-dependent part

��	−�t��	+�t���2 = exp�− 8
�2

m�o
3sin2
1

2
�ot�� �28�

�for the derivation, see Appendix B; m is the oscillator mass�.
For pure initial spin states �c=0,1� we have P��̂o�t��=1. An
example for P��̂o�t�� for a mixed initial spin state is given in
Fig. 1.

It is easy to see from Eqs. �27� and �28� that the minimum
purity with respect to t and c is

Po
min =

1

2
�1 + exp�− 8��� , �29�

where

� =
�2

m�o
3 . �30�

Therefore, one has to choose �→0 and thus

1 − Po
min 
 1 �31�

in order to apply the FA.
We can distinguish two different ways to enforce the limit

�→0,

m → �,�o = const.,� = const. �32�

�o → �,m = const.,�2/�o = const. �33�

Their relevance will become clear in Sec. VI. If one accepts
the resulting finite Po

min for some finite �, the local coherence
time may be called infinite.

B. xz-interaction (xz-SOM)

We discuss now the more complicated case of an interac-
tion of form Eq. �23�. This interaction is motivated by the
following considerations. First, the above case is very special

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1.0

t

P
[ρ̂

o
(t

)]

FIG. 1. Purity dynamics of the oscillator in the z-SOM for the
special parameters �=0.1, c=0.7, 	=0, m=�s=�o=1.
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in that the minimum purity reached can be controlled com-
pletely by the system parameters. The more general
xz-interaction case will show that this property is dependent
on the interaction. Second, the chosen interaction allows us
to study the effect of imperfect control over the exact form of
the interaction as it might be the case for a more realistic
experimental situation. Finally, the xz interaction exhibits a
remarkable diversity of dynamics which serves to illustrate
the pros and cons of the proposed work reservoir quality
measures as well as the possibility to realize quantum work
sources within the given model.

First, we show that a Hamiltonian

Ĥ =
�s

2
�̂z + �ŝx̂ + �o
â†â +

1

2
� �34�

with an arbitrary operator ŝ acting on the spin’s Hilbert space
is equivalent to the xz-SOM. This is seen from the expansion

of ŝ in the operator basis �Q̂k �k=0,1 ,2 ,3	= 1
�2

�1̂ , �̂x , �̂y , �̂z	,
which reads

ŝ = �
k=0

3

tr�Q̂k
†ŝ�Q̂k �35�

�for details refer to �28�, pp. 34–49�. The 1̂ term is local to

the oscillator and can be absorbed in Ĥo, while the �̂k terms
can always be transformed to the form ŝ=���̂z+��̂x� by the
local transformation exp�−i��̂z� with appropriately chosen
real �. This corresponds to a rotation around the z axis of the
spin. The xz-SOM discussed here is therefore representative
for the whole class of Hamiltonians of the form Eq. �34�.

C. Dynamics

Now, we want to look into the behavior of the system for
����1. To get insight into the dynamics, we invoke a rotat-
ing wave approximation �RWA�. For that purpose, we first

write the xz-SOM interaction Hamiltonian Ĥxz in the interac-
tion picture

Ĥ̃xz � �̂zâ exp
i
� − �

2
t� + �̂zâ

† exp
− i
� − �

2
t�

+ ��̂+â exp�− i�t� + ��̂−â exp�i�t�

+ ��̂+â† exp�− i�t� + ��̂−â† exp�i�t� , �36�

where we have defined �ª�s+�o and �ª�s−�o. By re-
stricting ourselves to the resonant case �=0 and omitting all
terms rotating with frequencies � and � /2, the xz-SOM
Hamiltonian in RWA turns out to be

Ĥxz
RWA =

�

2
�̂z + g��̂+â + �̂−â†� + �
â†â +

1

2
� �37�

in the Schrödinger picture. This is just the Hamiltonian ĤJC
of the Jaynes-Cummings model �JCM� �29,30� with

g =
��

�2m�
�38�

and �=�s=�o. According to �31,32�, the RWA is accurate as
long as g /�
1. This condition is met for all relevant cases,
since we consider in the following a situation where the pa-
rameters m ,�, and � have been chosen such that for �
=0�z-SOM� the FA holds for all times.

Now let us turn to the interpretation of the result. First, we
note that by performing the RWA, in particular, the �̂z term
of the interaction Hamiltonian is removed. Therefore, the
xz-SOM in RWA captures the effect of the �̂x interaction
alone and, in turn, this means that the main dynamics are
governed by the �̂x part of the interaction alone.

Second, the dynamics of the JCM �and therefore of the
xz-SOM in RWA� scale in time with g−1. This is most clear
from the exact time-evolution operator for the JCM ��33�, p.
205� in the case of exact resonance

ÛJC�t� = 
 cos�gtB̂� − iâ† sin�gtÂ�Â−1

− i sin�gtÂ�Â−1â cos�gtÂ�
� �39�

with Â=�â†â+1 and B̂=�â†â.
The numerical results of the dynamics of the purity of the

oscillator are given in Fig. 2 for the case of a coherent initial
state with one photon in the cavity on average �	=1�. The
deviations of the numerical results for the xz-SOM with and
without RWA for three different orders of magnitude of g are
given in Fig. 3.

From Fig. 3 one sees that the RWA yields good results
�less then 10% relative deviation� up to ��10. This shows
again that the RWA gives an accurate description of the
xz-SOM dynamics in agreement with the expectation given
above.

It is obvious from Figs. 1 and 2 that the purity behavior of
the xz-SOM is fundamentally different from the z case. The
decrease in the purity due to the additional �̂x interaction
term is several orders of magnitude stronger than what is
expected from the �̂z term alone and due to the approximate
scaling behavior of the xz-SOM, the minimum does not de-
pend on �, as long as � is not zero. We conclude from that,
that in the presence of an arbitrarily small but nonvanishing
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o
(g

t)
]

FIG. 2. Purity of the oscillator for numerically exact dynamics
of the xz-SOM in RWA for arbitrary g. The parameters are: �
=0.01, 	=�o=�s=1, c=0.7.
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�̂x term the FA and with it the work reservoir quality of the
oscillator will break down in finite time. Reduction of � can
only delay the breakdown and, thus, if � ,��0 no choice of
the other model parameters can prevent the breakdown. This
result is in agreement with the finding in �24� for the that the
coherence time for the JCM depends on the interaction
strength such that weaker interaction leads to longer coher-
ence time.

In the above sense, the work reservoir functionality in the
given quantum scenario is quite sensitive to the quality of
control of the interaction between spin and oscillator.

VI. WORK SOURCE QUALITY IN THE z-SOM

Considering the first case of z-SOM, let us assume that
one has chosen the parameters of the system such that Eq.
�31� is fulfilled. We can then apply the FA not only to de-
scribe the dynamics of the system up to any desired accuracy
but moreover, we get a new level of description combined
with new physical insight in the properties and characteris-
tics of the system. This will be outlined below.

Applying the FA to the SOM, we find according to Eqs.
�8� and �9� the following effective coupled equations:

i�̇̂s = �
�s

2
+ ��x̂��t���̂z, �̂s� , �40�

i��̇�t�� = �Ĥo + ��1 − 2c�x̂����t�� , �41�

where we have defined �x̂��t�ª ���t��x̂���t��. Hence, the
spin is driven by the oscillator displacement which acts like
an additional time-dependent magnetic field, modulating the
spin’s Zeeman splitting. On the other hand, the spin dynam-
ics lead to a constant displacement of the oscillator potential.
In this sense there is asymmetry between the two sub-
systems: The effective Hamiltonian for the oscillator is
modified but not time dependent.

Clearly, this result is in agreement with the result which
one would obtain from applying the integral measure based
on W and Q: the latter is zero, since according to Sec. V A
and Eq. �40�, the spin’s state does not change and the oscil-
lator only exerts classical driving on the spin. The local ef-
fective energy change of the spin resulting from the driving
is 100% work. Hence, the oscillator acts as an ideal work
source at least in the limits discussed in Sec. V A, Eqs. �32�
and �33�.

However, it has to be noted that the peak-to-peak ampli-
tude ��s

eff=���x̂�max− �x̂�min� of the effective spin splitting is
dependent on the system parameters �see Appendix C�,

��s
eff = 2�� 2

m�o
�	 + �� , �42�

where �=��2 / �2m�o
3��1−2c�=�� /2�1−2c� �cf. Eq. �30��.

For the first limit proposed in Eq. �32�, we therefore find that
both �→0 and ��s

eff→0, if all parameters besides m are
kept constant. Thus, the work effect induced by the oscillator
diminishes more and more for increasingly better fulfilled
FA. This can be avoided, though, by additionally imposing
	→�, such that �	�2 /m remains constant, which then defines
the splitting’s amplitude. This is a classical limit in that the
mass and average excitation number of the oscillator go to
infinity.

There is also a true quantum limit, though, which is found
to be realized exploiting the second limit given in Eq. �33�.
Here, by letting �o→�, we enforce that �→0 so that the
factorization approximation becomes exact. However, by re-
quiring �2 /�o=const., the prefactor of ��s

eff in Eq. �42�,
2�2�2 / �m�o�, becomes constant. Thus, although �→0,
��s

eff retains a finite value

��s
eff → 2�� 2

m�o
�	� = const. �43�

for arbitrary �small but finite� m and 	 in the limit of exact
FA.

By the preceding reasoning, we conclude that the oscilla-
tor is, indeed, a work reservoir for the spin, periodically
changing the spin splitting and therefore transferring work
to/from it. What is special about that finding is the fact that a
true quantum system �the oscillator in the quantum limit of
the z-SOM� can be set up as an ideal work source and, thus,
the work concept is not tied to classical devices. Moreover,
as long as we fulfill Eq. �31� the oscillator behaves as a work
reservoir for any time period.

VII. WORK SOURCE QUALITY IN THE xz-SOM

In this section, we present and discuss our results for the
work reservoir behavior in the more general xz-SOM pre-
sented in Sec. V B with focus on the suitability of the work
source quality measures proposed in Sec. IV.

The numerical results used herein have been produced
with the Mathematica package using the following tech-
niques: we have computed the time evolution of the system
by direct diagonalization of the Hamilton operator �with a
cutoff chosen such that only states with occupation probabil-

0 5 10 15 20 25 30 35
�5
�4
�3
�2
�1

0
lo

g 1
0
δ

0 5 10 15 20 25 30 35
�5
�4
�3
�2
�1

0

lo
g 1

0
δ

0 5 10 15 20 25 30 35
�5
�4
�3
�2
�1

0

gt

lo
g 1

0
δ

(b)

(a)

(c)

FIG. 3. Common logarithm of the absolute deviation � of the
�numerically exact� purity dynamics with and without RWA for �top
to bottom� g=−0.01,−0.1,−1 corresponding to �=�2,10�2,
100�2 according to Eq. �38� with the parameters �=−0.01, m
=1, 	=�o=�s=1, c=0.7.
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ity higher than 10−6 are included�. Integration of quantities—
where necessary—has been performed using the rectangle
rule and the error of integration has been controlled by cross-
checking with results for the trapezoidal rule and/or for
smaller time steps.

A. Purity based approach

We need now to define a lower bound for the purity of the
oscillator. The �̂z coupling alone already leading to some
limited purity loss in the oscillator can be considered as sort
of a “natural” purity drop, which has to be accepted for any
system that interacts at all and that is present even if the FA
is good and the work source quality high.

The work source functionality is considered to fail when
the purity decrease of the RWA dynamics �caused by the �̂x
interaction term� reaches the maximum purity drop Po

min of
the �̂z dynamics alone found for the given system parameters
�� ,�s ,�0 ,m�. This allows us to define a breakdown time t�

by P��̂o�t���= Po
min.

The close connection of the xz-SOM dynamics to the
JCM dynamics seems to suggest an analytical approach
based on the standard approximations made to solve the JCM
�see, e.g., �34�, Ch. 6�: approximation of the occupation
probability of the coherent state with a Gaussian and linear-
ization of the spectrum of the JCM around its peak. With
those approximations a fairly accurate description of the
JCM’s typical collapse and revival behavior of the spin po-
larization for high initial photon numbers ��	��1� is pos-
sible. After the initial collapse of polarization, the spin
reaches its minimum purity �30� and the oscillator purity will
as well have dropped significantly.

Unfortunately, even in the high photon number limit the
accuracy of this approach in the relevant time interval up to
this point of the evolution is insufficient: typical values of
the purity drop due to the �̂z interaction are of the order of
10−2, while the error of the mentioned approximations is of
around the same order during the collapse. This renders the
application of those approximations futile and since a full
analytical analysis is much too involved, we will only exem-
plify some results based on numerics.

To this end, we choose the following parameters for the
xz-SOM: �o=�s=1 �resonant case�, mo=1, �=�=0.1. In the
following, we consider the results of two special cases:

�a� 	=0, c=0.5;
�b� 	=2, c=1.
These two examples are drawn from a set of results for

initial states with parameters 	� �0,4� and c� �0.5,1.0� and
have been chosen for they represent in some sense extremal
cases, that will be seen to illustrate the features of the differ-
ent work source quality measures. A short overview about
the more general behavior of the xz-SOM is given in Sec.
VII C.

The purity behavior of the examples is shown in Fig. 4.
The time after which the FA is estimated to fail is roughly
t�a�
� �28 and t�b�

� �73. Although this means that the second
case is expected to exhibit work reservoir functionality about
three times longer than the first case, one would conclude
from the curves that for both cases, the oscillator’s work

source functionality degrades quickly after the initial high
purity phase and is virtually absent at least for t�100.

B. Work/heat based approach

However, taking a look at the result for the integral qual-
ity measure R shown in Fig. 5 one comes to a completely
different conclusion: in case �a� the oscillator starts as a per-
fect heat source rather than a perfect work source and only in
the course of time a work source effect arises, whereas in
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FIG. 4. Oscillator purity behavior of two special cases ��a� 	
=0, c=0.5 and �b� 	=2, c=1� of xz-SOM and comparison with
minimum purity of z-SOM for the given system parameters: Nu-
merical exact result �solid line�, numerical result with RWA
�dashed�, minimum z-SOM purity �dotted�, which—according to
Eq. �29�—is �1+exp�−2 /25�� /2�0.962. The insets show the cross-
ings of RWA-purity with minimum z-SOM purity.
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FIG. 5. Results of the integral work reservoir quality measure
R�t ,0� for the examples as of Fig. 4: �a� 	=0, c=0.5 �solid line�,
�b� 	=2, c=1 �dashed�
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case �b� the oscillator is recognized as a nearly ideal work
source during the whole interval. It is astonishing to see that
the purity based measure gives such a different picture since
the reasoning based on the FA is valid: During the initial
phase, Ls

eff is close to 0.
The reason for this seemingly contradictory characteriza-

tion becomes evident when examining the results for the
integrated work and heat, W�t� and Q�t� �see Fig. 6�. In both
presented cases, the total heat flow in the beginning of the
dynamics is small as expected from the FA argument. Also,
the heat becomes significant not before t�a�

� and t�b�
� , respec-

tively, which again demonstrates the strong connection be-
tween heat and purity.

However, the work exhibits a completely different behav-
ior for the two cases: in the first case, the work remains
almost constant at zero until oscillations set in at around t
�100 �see the inset of Fig. 6�a��. Those oscillations lead to
the slow increase in work source quality in the second half of
the considered time interval. Although the oscillations have
only small amplitude, their work source effect becomes sig-
nificant due to their frequency, which is high when compared
to the time scale of heat dynamics.

In case �b�, W�t ,0� shows strong oscillations of an ampli-
tude orders of magnitude larger than in case �a� from the
very beginning of the dynamics. Thus, the reason for the
contradiction to the purity measure result is traced back to
the problem already touched on in Sec. VII A: although the
purity can be used as a measure for the size of incoherent
part of the effective dynamics of the spin, Ls

eff, which is
associated with the heat flow, it is completely insensitive to

the size and effects of the coherent par Ĥs
eff and thus the

actual work source effect.
From this result, we can draw the conclusion that due to

the fact that the purity measure is only linked to Ls
eff alone, it

can only be used as a necessary condition for work source
functionality. In order to get the full picture, a more detailed
analysis of the work and heat fluxes via the measure R is
necessary.

C. Work source quality overview

Computing R as defined in Eq. �20� for a low photon
number parameter window �	� �0,4�� and initial spin tem-
peratures ranging from 0 to ��c� �0.5,1��, we find the fol-
lowing trends �cf. Fig. 7�:

For 	=0, the overall work source quality of the consid-
ered interval t� �0,200� is generally significantly lower than
for the corresponding �with respect to c� cases for 	�0, and
R�200,0� ranges from roughly 0.8 to 0.2 with decreasing c,
except for the particular initial state c=1, 	=0. Initial states
with 	=0 lead to a significant work effect despite their lack
of initial excitation of the oscillator. This is easily explained
in view of Eq. �41�: for c�0.5, the oscillator is subject to an
effective displacement of its potential. In the new set of the
new eigenstates, the initial state �0� is a coherent superposi-
tion state again.

For 	�0, R�200,0� takes on values close to or above 0.9,
with a slow increase for higher 	 and c. The first increase
can be related to the higher excitation of the oscillator and
the resulting bigger amplitude of the position expectation.
The second trend has to do with a special property of the
initial states �0��	� and �1��	� of which the initial state of the
xz-SOM is a statistical mixture.

In order to explain the trend for increasing c, we invoke
the first-order perturbation theory for the extremal initial
states �0��	� and �1��	� which is applicable to the beginning
of the dynamics, as long as gt�
1 holds with g=10−2 /�2.
The calculation is carried out in Appendix D. Here, we only
make use of the result

ÛI�t��0��	� = ��0� − i	gt�1���	� + O�g2� , �44�

ÛI�t��1��	� = 
�1� − i
	�

2
gt�0���	� − igt�0�

�

�	�
�	� + O�g2� ,

�45�

and 	� denotes the complex conjugate of 	. From this form

of the state �	��	�, we easily see that in first order ÛI�t��0��	�
factorizes contrary to ÛI�t��1��	�. The purity behavior of the
initial state ��0�= �c�0��0�+ �1−c��1��1�� � �	��	� continu-
ously changes from the �0��	� case to the �1��	� case. As the
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FIG. 6. Integrated work W�t ,0� �solid line� and heat Q�t ,0�
�dashed� for the two chosen examples, as of Fig. 5. The inset of
case �a� shows W�t ,0� alone.
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�1��	� state becomes more and more mixed into the initial
state with decreasing c, a significant purity drop happens at
earlier times of the evolution. The same is true for the heat
flow, which is tied to the purity drop. With this increased
heat flow at the early stage of the evolution, Q�200,0�
reaches higher values for decreasing c.

Moreover, the size of work flux for the same change of
effective splitting of the spin decreases with decreasing c
until it reaches 0 for c=0.5. Thus, in the beginning and as
long as the spin’s state is close to its initial occupation, the
work source effect of the oscillator is reduced or suppressed
additionally. Clearly, this reduces the work source quality
and explains the trend seen in the numerical results.

VIII. SUMMARY

Work and heat are related to �thermodynamic� processes,
which seem to require external control. In this paper, we
have argued that work functionality may show up in closed
bipartite quantum systems, even down to the nanoscale. We
have shown under what general conditions the respective
subsystem dynamics may be described via time-dependent
effective Hamiltonians and in this sense act as classical
driver for each other.

We have then brought forward the argument that energy
exchanged under such conditions has to be considered as
work from the viewpoint of thermodynamics. In addition, we
have introduced purity based and work/heat based work
source quality measures and discussed their usefulness. We
have demonstrated that due to the lack of sensitivity to the

effects of Ĥ1
eff, the purity based measure is only a necessary

condition for work source functionality, in general.
To give an example for a quantum work source and to

illustrate the properties of the given work source quality
measures, we have applied these results to the SOM confirm-
ing that a system as small and simple as a single harmonic
oscillator coupled to a spin can act as a work reservoir for the
latter.

Finally, with regard to quantum thermodynamic ma-
chines, we note that the implementation of a full thermody-
namic process within a closed quantum system will require
driving as well as thermalizing embeddings.
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APPENDIX A: GENERALIZED FACTORIZATION
APPROXIMATION

In its original form the FA is formulated for a bipartite
system �cf. �24�, Eq. �3� and �4��. Let us now consider a
tripartite system defined by the Hamiltonian

Ĥ = Ĥ0 + Ĥ1 + Ĥ12 + Ĥ2. �A1�

Let us assume that system 0 has interacted with system 1 in
the past but is now decoupled from system 1. System 2,
however, is supposed to have been uncoupled in the past and
is now being coupled to system 1 alone. Finally, we assume
that the combined system 01 and system 2 are now in a pure
state. We are then left with an initial state for the whole
system of the form

�̂�0� = �̂01�0� � �̂2�0� , �A2�

with �̂01�0�= ��01�0����01�0�� and �̂2�0�= ��2�0����2�0��.
We now consider the dynamics of this system with respect

to the given initial state. In the case that tr��̂2
2�t���1 holds,

the FA is applicable to the whole system yielding the two
coupled equations

i���̇01�t�� = �Ĥ0 + Ĥ1 + ��2�t��Ĥ12��2�t�����01�t�� ,

�A3�

i���̇2�t�� = �Ĥ2 + ��01�t��Ĥ12��01�t�����2�t�� . �A4�

By restating Eq. �A3� in the form

i��̇̂01�t� = �Ĥ0 + Ĥ1 + ��2�t��Ĥ12��2�t��, �̂01�t�� �A5�

and taking the trace of the Hilbert space of the ancillary
system 0, we arrive at the result

i��̇̂1�t� = �Ĥ1 + ��2�t��Ĥ12��2�t��, �̂1�t�� . �A6�

To get this result, we have made use of the two partial trace
relations

tr0�Â � 1̂1,B̂� = 0, �A7�

tr0�1̂0 � Â,B̂� = �Â, tr0B̂� . �A8�

Note that in contrast to the case of the FA for a bipartite
system, the criterion for the applicability of the FA is the
purity dynamics of system 2 alone.

APPENDIX B: PURITY OF THE OSCILLATOR

The purity dynamics of the oscillator in the case of the
pure �̂zx̂ interaction can be derived from the solution of the
Liouville-von Neumann equation given in Eq. �26�,

�̂�t� = 
c�	−�t���	−�t��
�1 − c��	+�t���	+�t��

� .

Thus, the oscillator reduced state is

�̂o�t� = c�	−�t���	−�t�� + �1 − c��	+�t���	+�t�� �B1�

and taking the square and the trace of this expression, we end
up with the result for the purity given in Eq. �27�,

P��̂o�t�� = c2 + �1 − c�2 + 2c�1 − c���	−�t��	+�t���2.

For the time-dependent term we find
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��	−�t��	+�t���2 = ��	�Û−
†�t,0�Û+�t,0��	��2, �B2�

= ��	�exp�iĤ−t�exp�− iĤ+t��	��2 �B3�

with Ĥ
= Ĥo
�x̂

�s

2 . Making use of the displacement op-

erator D̂�	�=exp�	â†−	�â� and its properties

D̂�− 	�x̂D̂�	� = x̂ +� 2

m�o
Re�	� , �B4�

D̂�− 	�p̂D̂�	� = p̂ + �2m�o Im�	� , �B5�

we can express Ĥ
 as

Ĥ
 = D̂�− �
�ĤoD̂��
� + C �B6�

and therefore have

Û
�t,0� = e−iCtD̂�− �
�exp�− iĤot�D̂��
� �B7�

with �
= �� /�2m�o
3 up to constant factors or a phase, re-

spectively, which are irrelevant for the computation of the
modulus in Eq. �B2�. With the help of the relations

D̂�	�D̂��� = exp�i Im�	����D̂�	 + �� , �B8�

exp�− iĤot��	� = exp�− i�ot/2��	 exp�− i�ot�� , �B9�

we arrive at

�	
�t�� = exp�i�
�t����	 + �
�exp�− i�ot� − �
� .

�B10�

Finally making use of the relation ��	 �	���2=exp�−�	
−	��2� yields the result

��	−�t��	+�t���2 = exp�− 8
�2

m�o
3sin2
1

2
�ot�� . �B11�

APPENDIX C: AMPLITUDE OF THE SPIN’S
EFFECTIVE SPLITTING IN THE z-SOM

In the case of the z-SOM and applicable FA, the effective
Hamiltonians of the spin and oscillator are found to be �Eqs.
�40� and �41��

Ĥs
eff�t� = 
�s

2
+ ��x̂��t���̂z, �C1�

Ĥo
eff = �Ĥo + ��1 − 2c�x̂� , �C2�

and the latter may be rewritten in the form

Ĥo
eff =

1

2
�o�X̂̃2 + P̂̃2� + const �C3�

with the dimensionless position and momentum operators

X̂̃ = X̂ +� �2

m�o
�1 − 2c� �C4�

P̂̃ = P̂ , �C5�

where X̂=�m�ox̂, P̂= p̂ /�m�o. Making use of the properties

of the displacement operator D̂�	� in Eqs. �B4� and �B5�, one
finds that

Ĥo
eff = D̂�− ��ĤoD̂��� �C6�

with

� =� �2

2m�o
�1 − 2c� . �C7�

In order to compute the peak-to-peak amplitude of the effec-
tive spin splitting

��s
eff = ���x̂�max − �x̂�min� �C8�

we need to evaluate

�x̂��t� = �	�t��x̂�	�t�� = �	�exp�iĤo
efft�x̂ exp�− iĤo

efft��	�

= �	�D̂�− ��exp�iĤot�D̂���x̂D̂�− ��

�exp�− iĤot�D̂����	� �C9�

=�	 + ��exp�iĤot�x̂

�exp�− iĤot��	 + �� + �̃ , �C10�

where we have used Eqs. �B4�, �B8�, and �C6� assuming 	
�R and defining �̃=�2 / �m�o��. Now, we can see that the
first term is just the time evolution of the expectation value

of the position of the original oscillator described by Ĥo for a
coherent initial state �	+��. With the help of Eq. �B9� it is

straightforward to show that �X̂�max− �X̂�min=2�2�	+�� and
therefore

��s
eff = 2�� 2

m�o
�	 + �� . �C11�

Note that this result is only exact if the Hamiltonian govern-

ing the oscillator’s dynamics is Ĥo
eff and Lo

eff��̂�t��=0, that is
if the FA is exact. Still, if the FA holds in good approxima-
tion, Eq. �C11� is a good approximation as well.

APPENDIX D: FIRST-ORDER TIME-DEPENDENT
PERTURBATION THEORY FOR PURE

INITIAL STATES OF JCM

It is convenient to apply the perturbation theory in the
interaction picture. All interaction picture quantities are de-
noted by a superscript “I.” The expansion of the time-
evolution of the state is given by

��I�t�� = ���0�� + Û1
I �t����0�� + O�g2� �D1�

and the first-order contribution to the time-evolution operator

Û1
I �t� is given by �see, e.g., �35�, p. 207ff�
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Û1
I �t� = − i


0

t

d�V̂I��� �D2�

and

V̂I�t� = Û0
†�t�V̂Û0�t�

= g exp�i�Ĥs + Ĥo�t���̂+â + �̂−â†�exp�− i�Ĥs + Ĥo�t�

= g��̂+â + �̂−â†� �D3�

is the interaction operator in the interaction picture. Accord-
ing to the RWA, only terms of the interaction are kept which
are time-independent in the interaction picture, thus the last
equality. From Eqs. �D3� and �D2�, it follows that

Û1
I �t� = − igt��̂+â + �̂−â†� . �D4�

The time evolution of a state in the JCM is therefore given in
first-order perturbation by

��I�t�� = �1̂ − igt��̂+â + �̂−â†�����0�� + O�g2� . �D5�

Here, we consider �0��	� and �1��	� as initial states. Together
with

â†�	� = 
 �

�	�
+

	�

2
��	� �D6�

�see �36�� we find for those states

ÛI�t��0��	� = ��0� − i	gt�1���	� + O�g2� , �D7�

ÛI�t��1��	� = 
�1� − i
	�

2
gt�0���	� − igt�0�

�

�	�
�	� + O�g2� ,

�D8�

where

�

�	�
�	� ª

�

�	��exp
−
�	�2

2
��

n=0

�
	n

�n!
�n�� �D9�

�	� is the complex conjugate of 	�.
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